Good action of a nilpotent group with regular orbits
نویسندگان
چکیده
Suppose that A is a finite nilpotent group of odd order having good action, in the sense [1 Ercan, G., Güloğlu, İ Ş., Jabara, E. (2020). Good action on group. J. Algebra. 560:486–501. DOI: https://doi.org/10.1016/j.jalgebra.2020.05.032.[Crossref], [Web Science ®] , [Google Scholar]], G order. Under some additional assumptions we prove Fitting height bounded above by sum numbers primes dividing |A| and |CG(A)| counted with multiplicities.
منابع مشابه
Nilpotent Orbits, Normality, and Hamiltonian Group Actions
Let M be a G-covering of a nilpotent orbit in 0 where G isa complex semisimple Lie group and g = Lie(G). We prove that under Poisson bracket the space R[2] of homogeneous functions on M of degree 2 is the unique maximal semisimple Lie subalgebra of R = R{M) containing g . The action of g' ~ R[2] exponentiates to an action of the corresponding Lie group G' on a G'-cover M' of a nilpotent orbit i...
متن کاملThe Action of a Nilpotent Group on Its Horofunction Boundary Has Finite Orbits
We study the action of a nilpotent group G with finite generating set S on its horofunction boundary. We show that there is one finite orbit associated to each facet of the polytope obtained by projecting S into the infinite component of the abelianisation of G. We also prove that these are the only finite orbits of Busemann points. To finish off, we examine in detail the Heisenberg group with ...
متن کاملQuantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits
Let G be a complex reductive group. We study the problem of associating Dixmier algebras to nilpotent (co)adjoint orbits of G, or, more generally, to orbit data for G. If g = 0 + n + in is a triangular decomposition of g and 0 is a nilpotent orbit, we consider the irreducible components of 0 n n, which are Lagrangian subvarieties of 0. The main idea is to construct, starting with certain "good"...
متن کاملNilpotent Orbits over Ground Fields of Good Characteristic
Let X be an F -rational nilpotent element in the Lie algebra of a connected and reductive group G defined over the ground field F . Suppose that the Lie algebra has a non-degenerate invariant bilinear form. We show that the unipotent radical of the centralizer of X is F -split. This property has several consequences. When F is complete with respect to a discrete valuation with either finite or ...
متن کاملRationality Properties of Nilpotent Orbits in Good Characteristic
Let X be an F -rational nilpotent element in the Lie algebra of a connected and reductive group G defined over the ground field F . One may associate toX certain cocharacters of Gwith favorable properties; this is an essential feature of the classification of geometric nilpotent orbits due to Bala-Carter, Pommerening, and, more recently, Premet. Suppose that the Lie algebra has a non-degenerate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2022
ISSN: ['1532-4125', '0092-7872']
DOI: https://doi.org/10.1080/00927872.2022.2058008